Tuesday, December 4, 2012

'Junk DNA' drives embryonic development

ScienceDaily (Dec. 3, 2012) ? An embryo is an amazing thing. From just one initial cell, an entire living, breathing body emerges, full of working cells and organs. It comes as no surprise that embryonic development is a very carefully orchestrated process -- everything has to fall into the right place at the right time. Developmental and cell biologists study this very thing, unraveling the molecular cues that determine how we become human.

"One of the first, and arguably most important, steps in development is the allocation of cells into three germ layers -- ectoderm, mesoderm, and endoderm -- that give rise to all tissues and organs in the body," explains Mark Mercola, Ph.D., professor and director of Sanford-Burnham's Muscle Development and Regeneration Program in the Sanford Children's Health Research Center.

In a study published November 14 in the journal Genes & Development, Mercola and his team, including postdoctoral researcher Alexandre Colas, Ph.D., and Wesley McKeithan, discovered that microRNAs play an important role in this cell- and germ layer-directing process during development.

MicroRNA: one man's junk is another's treasure

MicroRNAs are small pieces of genetic material similar to the messenger RNA that carries protein-encoding recipes from a cell's genome out to the protein-building machinery in the cytoplasm. Only microRNAs don't encode proteins. So, for many years, scientists dismissed the regions of the genome that encode these small, non-protein coding RNAs as "junk."

We now know that microRNAs are far from junk. They may not encode their own proteins, but they do bind messenger RNA, preventing their encoded proteins from being constructed. In this way, microRNAs play important roles in determining which proteins are produced (or not produced) at a given time.

MicroRNAs are increasingly recognized as an important part of both normal cellular function and the development of human disease.

So, why not embryonic development, too?

Directing cellular traffic

To pinpoint which -- if any -- microRNAs influence germ layer formation in early embryonic development, Mercola and his team individually studied most (about 900) of the microRNAs from the human genome. They tested each microRNA's ability to direct formation of mesoderm and endoderm from embryonic stem cells. In doing so, they discovered that two microRNA families -- called let-7 and miR-18 -- block endoderm formation, while enhancing mesoderm and ectoderm formation.

The researchers confirmed their finding by artificially blocking let-7 function and checking to see what happened. That move dramatically altered embryonic cell fate, diverting would-be mesoderm and ectoderm into endoderm and underscoring the microRNA's crucial role in development.

But they still wanted to know more?how do let-7 and miR-18 work? Mercola's team went on to determine that these microRNAs direct mesoderm and ectoderm formation by dampening the TGF? signaling pathway. TGF? is a molecule that influences many cellular behaviors, including proliferation and differentiation. When these microRNAs tinker with TGF? activity, they send cells on a certain course -- some go on to become bone, others brain.

"We've now shown that microRNAs are powerful regulators of embryonic cell fate," Mercola says. "But our study also demonstrates that screening techniques, combined with systems biology, provide a paradigm for whole-genome screening and its use in identifying molecular signals that control complex biological processes."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Sanford-Burnham Medical Research Institute. The original article was written by Heather Buschman.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. A. R. Colas, W. L. McKeithan, T. J. Cunningham, P. J. Bushway, L. X. Garmire, G. Duester, S. Subramaniam, M. Mercola. Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. Genes & Development, 2012; DOI: 10.1101/gad.200758.112

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/~3/rYy8pfKBETQ/121203091556.htm

quick silver where have you been rihanna kirk cousins mothers day ovechkin one world trade center bks

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.